If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2-7f+10=0
a = 1; b = -7; c = +10;
Δ = b2-4ac
Δ = -72-4·1·10
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-3}{2*1}=\frac{4}{2} =2 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+3}{2*1}=\frac{10}{2} =5 $
| x/4+15=17 | | 60/100=78,000/x | | -3+8k=61 | | 2/3x+1/3=7 | | 2(-3+2)+a=2 | | 121x^2=-40 | | 6.5c–2.5c+9=7 | | 2x+2+x-4=180 | | 7c+115=66 | | -250x5=1355 | | -4+2k=4 | | -2(x+3)=-x-4(x+3) | | 3(0.1x-5)=0.2-5 | | 7p+17=66 | | -10x=-4000 | | x^2-10x=6=0 | | 15=-5(x-3) | | a+4=2a+2 | | n+-3.5=6.7 | | 6x-9=12+1 | | -9-16x=-601 | | Y=2x^2+12+7 | | 9m+6=51 | | 6x-28=4x+53 | | 4x-6=86 | | 1=7–2k | | 2x-25=9 | | 2x=-5/4x+3/4 | | 3r–4=5 | | -17+5y=+6y=18 | | 12y^2-35y+23=0 | | -8x+9=-9x-3 |